Clusters of just three gold atoms have exceptional catalytic activity © |
Chemists in Spain have shown that small clusters of gold atoms are excellent inorganic catalysts with record-breaking efficiency.
The clusters, which have been used in the hydration of alkynes, exhibit
catalytic turnover frequencies of up to 100,000 per hour at room
temperature.
But for the most part, industry hasn’t yet turned to gold as a catalyst. The problem is that a lot of the precious metal is required – loadings of about 5% by mole for just a few hundred milligrams of substrate. For this reason, interest in gold as a catalyst has remained primarily academic.
The researchers focused on the ester-assisted hydration of alkynes. In this reaction water turns alkynes into ketones; it used to be used by industry to form acetaldehyde for the production of acetic acid and other chemicals from acetylene using a mercury catalyst.
The Valencia chemists formed the gold clusters by adding the reactant substrate to a solution of gold chloride (AuCl) or chloroauric acid (HAuCl4). Using ultraviolet spectroscopy and matrix-assisted laser–desorption–ionisation-time-of-flight (MALDI) mass spectroscopy, they found that the reaction began when clusters of between three and five gold atoms formed. Then the reaction proceeded swiftly, with a turnover frequency of 100,000 – that is, converting 100,000 substrate molecules per gold cluster per hour. Such catalytic activity is nearly five orders of magnitude higher than that previously reported, the researchers claim.
‘The higher the dilution, the better the formation of the clusters, [so] extremely low amounts of gold are sufficient to catalyse the reactions,’ says Corma. ‘Clusters are rearranging [with] time in the reaction mixture – but each reaction needs a type of cluster, i.e. a number of atoms of gold clustered, so control of the formation of [a] particular cluster would lead to an even more efficient process.’
The high catalytic turnover ‘is of significance for industrial applications’, says Stephen Hashmi, an organic chemist at Heidelberg University in Germany. ‘The fact that this is possible at room temperature is nice but, as most chemical engineers will confirm, for industrial reactors … room temperature reactivity is not crucial, [and] slightly higher temperatures are preferred.’
-------------------------
*Leave a comments, questions or even a suggestions below this post. Your expressions are always welcomed.
0 comments:
Post a Comment